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Abstract

We propose a strategy to automatically denoise sensor data streams corrupted with noise that can be approximated as additive
white Gaussian noise. The proposed block-based method is adapted from the Monte-Carlo-SURE (MC-SURE) algorithm which
enables the blind optimization of the denoising parameter of a wide class of filters. Our framework is formulated by identifying
and addressing the challenges that arise when the MC-SURE algorithm is applied in an on-line data processing setting, where
latency (and the length of data blocks) must be constrained. The strategyhas been tested using real datasets. Our results indicate
that the proposed method can be effectively used to handle the denoisingof real sensor streaming data that reasonably fit the
Gaussian model assumption.

I. I NTRODUCTION

The increasing affordability of sensors is enabling their cost-effective use in real or near-real time monitoring of complex
phenomena and systems. Some examples are fusion in Tokamak reactors [1], electric power grids [2] and large-scale infras-
tructure networks ([4], [3]). The measurements obtained from multiple sensors monitoring the phenomena or systems under
consideration are analyzed to track their operating statesor detect deviations from their normal behavior. The effectiveness of
these real-time system monitoring algorithms depends, among other things, on the quality of their input data, that is, the level of
the signal relative to the level of noise. Since sensor data are typically subject to non-negligible measurement errorsfrom both
instrumental and environmental noise sources, the qualityof the measured data must be improved by filtering to remove most
of the noise contributions while preserving important waveform information. Although a host of denoising algorithms already
exist, most are not inherently designed for real (or near-real) time data processing as they often lack an on-line/automated
mechanism for selecting the best parameter value for denoising an arbitrary measurement sequence. Some denoising algorithms,
such as Kalman filters [5], are suited to on-line processing.Unfortunately, their performance depends on how well both the
underlying processes that generated the observations and the noise statistics have been modeled. This requirement fora-priori
full system model description is not practical in the general streaming data setting as it would be difficult to obtain an accurate
model for each of the processes that generated the multiple data streams.

We develop a simple method for on-line denoising of a single sensor data stream with arbitrary waveform characteristicsby
extending the Monte-Carlo Stein’s Unbiased Risk Estimate (MC-SURE) algorithm by Ramaniet al. [6]. This is an approach
that enables a blind optimization of the regularization parameters of a wide class of denoising algorithms that seek to recover an
arbitrary signal corrupted by additive white Gaussian noise (AWGN). The proposed method is trivially applicable to denoising
multiple data streams since the streams from distinct sensors are expected to have different signal and noise characteristics
and can be processed independently. The MC-SURE formulation is particularly suited for use in denoising sensor data streams
because it produces the optimal denoising parameters (using a mean-squared-error criterion) of a chosen filter withoutany
assumptions about the underlying noise-free signal.

This technical report is organized as follows. In Section II, the general concept of the MC-SURE algorithm is described and
relevant issues concerning its application to on-line/real-time data processing scenarios are discussed. Section III deals with the
approaches taken to solve these problems. Experimental results and discussions are provided in IV, followed by a concluding
summary in Section V.

II. CONCEPTS ANDCHALLENGES

A. Description of the MC-SURE algorithm

The MC-SURE algorithm is a procedure for generating the optimal parameters of an arbitrary1 denoising algorithm used to
estimate a signal corrupted by additive white Gaussian noise. Since the optimality criterion is the minimum mean-square error
(MSE), the MC-SURE strategy finds the best denoising parameter by minimizing Stein’s Unbiased Risk Estimate [7], which
is an unbiased estimate of the MSE that can be computed from measured data without any knowledge about the underlying

1Any denoising function that is continuous and weakly differentiable. This coincides in practice with a wide class of denoising algorithms.
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noise-free signal or the functional expression of the denoising filter. The formal setup is the following: consider the typical
denoising problem where one has a noisy dataset

y = s + w

comprised ofs ∈ R
N , the vector of samples from a sought-after signal, andw ∈ R

N , the vector of the realizations of a
zero-mean AWGN with varianceσ2. The parametric denoising algorithm chosen is the mapping

ŝλ = fλ(y)

producing the signal estimatês from the measured datay. The vector-parameter,λ, controls the level of denoising and
corresponds to the parameters of the denoising algorithm. The SURE statistic estimating the mean-squared error1

N
‖s− ŝλ‖

2

is expressed in [6] as

Tλ(y) =
1

N
‖y − ŝλ‖

2 +
2σ2

N
divy{fλ(y)} − σ2 (1)

where divy{fλ(y)} is the divergence of the mappingfλ(·) with respect to the datay. The optimal denoising parameterλ∗ is
the minimizer of theλ-dependent SURE curve{Tλ(y) : λ ∈ R

K}, whereK is the number of elements in the vector-parameter
λ. The optimal parameter is thus formally given by

λ∗ = arg min
λ

{Tλ(y) : λ ∈ R
K} , (2)

and the best estimate of the underlying signals is given by ŝ∗ = fλ∗(y).
Figure 1 illustrates the effectiveness of the MC-SURE method for denoising a data segment corrupted with AWGN. Figure

1a shows a noisy data segment and the underlying signal estimated using MC-SURE. The example data segment is generated
by adding AWGN to a known signal. The denoiser selected is the Gaussian filter and the denoising parameterλ is the standard
deviation of the Gaussian filter. The MSE-statistic1

N
‖s − ŝλ‖

2 is computed for60 uniformly-spaced points on the range of
λ values from0 to 15. The MC-SURE method is used to compute the SURE-statisticTλ(y) for these sameλ values. Figure
1b shows that the SURE curve approximates the MSE-curve and therefore can be used to find theλ parameter for use in
denoising the example data segment, as shown in Figure 1a.

The MC-SURE algorithm extends the applicability of SURE-based denoising by introducing an effective approach for
computing the divergence term divy{fλ(y)} without the need for a closed-form expression of the denoiser. This black-box
approach only requires multiple responses of the denoisingfilter to synthesized inputs: the measured datay plus multiple
realizations of a zero-mean i.i.d. random vector with a suitably chosen varianceǫ. We chose the MC-SURE algorithm as
the centerpiece of the proposed framework for denoising sensor data streams due to two key features. First, it provides a
straightforward method for automatically optimizing the parameters of a denoising filter without any assumption aboutthe
desired underlying signal. Second, the algorithm works with a large set of denoising filters and thus provides flexibility
when selecting denoising methods. However, the application of the MC-SURE method for on-line data processing has certain
challenges, which must be solved in order to arrive at a working framework.

B. On-line implementation challenges

On-line data processing techniques are either sample-based or block-based [10]. In sample-based processing, the dataare
processed one sample at a time and the algorithm combines theinformation about its current state and the current sample to
produce an output sample. For example, the recursive least squares (RLS) filter is an algorithm that does sample-based data
processing. In block-based processing, the sequence of measurements is buffered into data blocks that are processed one at
a time. Block-based processing distributes fixed computational overheads across multiple samples. However, this incurs an
additional latency which would not be present in sample-based processing. Short Time Fourier Transform (STFT) computation
is an example of block-based processing.

In this report, we consider the block-based approach for ouron-line data processing framework. The critical need for
minimizing latency dictates that the data blocks should have the minimally required number of observations, a requirement
which introduces certain challenges in denoising streaming data using the MC-SURE algorithm. Our experimental explorations
have also indicated other issues that are intrinsic to the MC-SURE method, rather than being particular to the on-line processing
setting. We next discuss these challenges using the exampledataset shown in Figure 2. This is a periodic dataset so that
successive data blocks have the same frequency/information content, allowing more meaningful comparisons across multiple
data blocks.
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(a) Dataset and the estimated signal using the MC-SURE method.

(b) MSE and MC-SURE curves for the dataset. The dot is the minimizer of the SURE curve (and
MSE-curve).

Fig. 1: Illustration of using the MC-SURE algorithm to denoise a dataset corrupted by AWGN using a Gaussian filter.

Fig. 2: Segment of the example dataset used to illustrate issues/challenges. The dataset is synthesized by adding AWGN (with
standard deviationσ = 0.34) to a sum of sinusoidal functions:f(x) = 1

3 · cos(20x) + 1
3 · cos(10x − π/4) − 1

3 · sin(5x) + 1
2 ·

sin(30x − π/4).
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1) Detrimental effects of noise estimation errors:The SURE statistic in Equation 1 considers the noise standard deviation
σ to be exactly known. This is clearly not the case in practicalsettings where this parameter must be estimated. In [6], Ramani
et al. assumed that the parameterσ can be reliably obtained using the Donoho median estimator [8], which estimates the noise
standard deviation of a length-N datasety as

σ̂ =
My

0.6745
,

whereMy is the median of theN/2 wavelet coefficients at the finest scale. The test datasets used in [6] consisted of images
corrupted with synthesized AWGN. In such cases, the noise is perfectly white/Gaussian and the numberN of observations is
sufficiently large (typically N≥ 2562) to assume that the estimate ofσ is practically equal to its true value.

However, in the context of real datasets, the observed noiseis typically not AWGN, although it can be reasonably modeled
as such in some instances. In streaming data processing, thelimited number of samplesN from a given data blocky might be
too small to reliably estimate the associated noise parameter. Unfortunately, uncertainties about the noise parameter can lead
to unreliable estimation of the SURE curves as shown in the following experiment.

From the example data of Figure 2, we generate two groups of datasets. The first is comprised of20 consecutive length-25

data segments{y(1)
i : i = 1, . . . , 20} while the second, of20 consecutive length-300 datasets{y(2)

i : i = 1, . . . , 20}. Individual
segments from a group have practically the same frequency content and noise characteristics since the example data theyare
taken from is periodic. Thus, the MC-SURE algorithm should ideally report the same denoising parameter value for all 20
data segments. For each length-25 data segmenty(1)

i , we generate an estimateσ(1)
i of the noise parameterσ using the Donoho

median estimator [8]. This estimate is used in Equation 1 to compute the SURE curve, resulting in the sequence of SURE-
statisticsTλ(y

(1)
i ) for λ ranging from0.0 to 15.0 at 0.25-increment. The parameterλ is the standard deviation of the Gaussian

filter which is chosen here as our example denoiser. The marked/blue curves in Figure 3 correspond to the SURE curves for
the 20 length-25 data segments. We oberve that the computed SURE curves vary significantly from one another although they
intend to estimate the same MSE-curve. Further, SURE curvesfrom two different data blocks can report drastically different
values for the best denoising parameter to select. For example in Figure 3, the minimizer is equal to0.25 for one curve but
2.00 for another. In contrast, when we consider the SURE curves ofthe 20 length-300 data segments{y(2)

i : i = 1, . . . , 20}
(the solid/red curves in Figure 3), we find better agreement and the minimizers are now all in the vicinity ofλ = 2.0.

Unfortunately, we cannot arbitrarily increase the size of data blocks in on-line data processing settings due to the need for
low latency. Therefore, to make the MC-SURE approach work for streaming data, a different strategy is needed to generate
sufficiently reliable SURE curves.

Fig. 3: SURE curves for two groups of data segments: 20 consecutive length-25 data segments and 20 consecutive length-300
data segments

2) Reliable computation of the divergence term:Given a length-N data segmenty and a specific (vector)-parameter value
λj from a suitably chosen grid of denoising parameters{λj : j = 1, 2, . . . , J}, the reliability of the computed SURE-statistics
Tλj

(y) also depends on the accuracy of the divergence term divy{fλj
(y)}. It has been shown in [6] that the divergence can

be expressed as

divy{fλj
(y)} = lim

ǫ→0
Eb{b

T (fλj
(y + b) − fλj

(y))}, (3)

whereb is a zero-mean i.i.d. random vector with covarianceǫ2I, andEb{·} denotes expectation with respect tob. When a
sufficiently small value ofǫ is chosen, divy{fλj

(y)} is estimated using a Monte-Carlo (MC) approach, which first generates
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k realizations{bi}
k
i=1 of the length-N random vectorb and then computes thek-MC-run divergence estimate as

d̂iv
(k)

y {fλj
(y)} =

1

ǫk

k∑

i=1

bT (fλj
(y + b) − fλj

(y)), (4)

which amounts to averaging thek single-MC-run divergence estimates.
To generate a SURE curve for a data segmenty, the divergence is estimated for each element of the parameter grid

{λj : j = 1, 2, . . . , J}. We conducted the following experiments to understand how the number of runs,k, and the length of
the data segment,N , influence the estimate of the divergence. We first define the estimation error as

E
(k)
λj

(y) = d̂iv
(k)

y {fλj
(y)} − divy{fλj

(y)} (5)

for i = 1, 2, . . . , J , where the reference divergence-curve divy{fλj
(y)} is the sequence to which thek-MC-run divergence

estimate converges to in probability. For the example dataset, the reference divergence is obtained by using a very large number
(i.e., k = 50000) of MC simulations. Ask increases, the variances of estimation errors tend to zero.

Figure 4 illustrates how the error variance changes withN when we estimate the divergence curve with a single MC run.
For each parameterλj , the associated error variance is estimated using 1000 computed values ofE(1)

λj
(y). The lowermost

curve of Figure 4, which corresponds to the variances of{E
(1)
λj

(y) : j = 1, 2, . . . , J} for a data segment of lengthN = 9600,
indicates that the error-variances are relatively small across the entire range ofλj values. The remaining curves correspond
to the error variance forN = 4800, 2400, 1200, 600, and 300. We observe that asN decreases, the error variances increase
rapidly and can become significant. Further, the error variance increases asλj decreases to zero indicating that the number of
MC runs required to attain a specific approximation error maydepend on the value ofλj .

Figure 5 shows50 single-MC-run estimates of the divergence curve for the case whenN = 300. The individual estimates
deviate significantly from the reference curve, indicatingthat multiple single-MC-run estimates must be combined to produce
a reasonable approximation of the divergence curve.

Fig. 4: Variance of the error in estimating the divergence curve for different value of the data sizeN .

Fig. 5: Comparison of the divergence curve with single-MC-run estimate when the data size is relatively low:N = 300 samples.
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Therefore, to adapt the MC-SURE algorithm to streaming data, where we process blocks of small size, we need to
automatically choose a numberk of MC runs that can 1) be averaged within the available time frame and 2) lead to a reliable
divergence-curve estimate which can be used to compute a sufficiently accurate SURE curve and generate an appropriate
denoising parameter.

3) Effects of strong DC components:: Our exploratory experiments suggested that using the MC-SURE procedure on
data blocks with a strong DC components failed to return an adequate denoising parameter value. To illustrate this issue,
consider the two datasetsz andzD, wherez is a length-300 segment of the example data andzD is generated by adding the
constant-vectorD to z: zD = D + z, where all elements ofD are set equal toD = 10. The application of the MC-SURE
algorithm toz produces the SURE curve in Figure 6(a), which reports a filterparameter value pfλ∗ = 2. SincezD andz are
identical except for the presence of a DC term, we expect the optimal parameter values for denoising to be similar. However
when MC-SURE is applied tozD, the resulting SURE curve, shown in Figure 6(b), indicates that no denoising is needed as
λ∗ = 0. The presence of the DC component erroneously decreases the parameter value reported by the MC-SURE algorithm.
In fact, we found that if the DC content is very high, the MC-SURE algorithm appears to always report that no denoising
is needed regardless of the amount of noise present. Since many interesting real datasets (e.g., wind power generation time
series) have been found to contain strong DC components, this issue must be addressed in practice. Contrary to the two issues
mentioned previously, this problem does not result from on-line data processing settings.

(a) (b)

Fig. 6: Comparison of the SURE curves generated using the datasetsz andzD. (a) SURE curve ofz and (b) SURE curve of
zD plus DC-component. Although the two SURE curves differ significantly, z andzD only differ by a DC-component term.

4) Spatial resolution issues: We previously discussed the issues that arise in computing the noise parameterσ and the
divergence-term divy{fλ(y)} in Equation 1. We next evaluate the issue of reliably computing the remaining term1

N
‖y− ŝλ‖

2.
Figure 7 shows the SURE curves for data blocks of different lengths extracted from the same sum of sinusoidals function plus
AWGN noise with varianceσ2. The individual SURE curves are generated using the same value ofσ and a common reference
divergence-curve. Since Gaussian denoising is a linear operation, the divergence-curve is the same for all data sequences
considered [6]. The discrepancies observed between the SURE curves can only be attributed to the term1

N
‖y − ŝλ‖

2. For
small data blocks (N = 10), the SURE curve reports that no denoising is needed (λ∗ = 0). As N increases, the SURE curves
are more in agreement and report similar denoising parameter values. This experiment indicates that even if the noise and
divergence terms are well approximated, we need a minimal number of observations in each data block so that the algorithm
can distinguish the signal from the higher frequency noise in the data.

Fig. 7: Illustration of the potential effects of spatial resolution on the accurate computation of SURE curves.
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III. A FRAMEWORK FOR STREAMING DATA: METHODOLOGY AND IMPLEMENTATIONS

We next describe a framework for denoising streaming data that addresses the issue we identified in Section II. Consider
a data streamy = {yn : n = 0, 1, . . . } comprised of a desired signals = {sn : n = 0, 1, . . . } plus additive white Gaussian
noise. The data model assumes that the noise standard deviation may vary slowly with time. The streaming measurements,y,
are taken in as successive overlapping data blocks of judiciously chosen sizes. The methodology for selecting the data block
sizes will be detailed later. Consecutive blocks are overlapped to mitigate possible edge effects which could result from the
filtering of limited-size data blocks. Thei-th data block is denoted by

yi = {yn : Ni ≤ n < Mi}

with Ni+1 = Mi − L, whereL is the length of the fixed overlap between two consecutive data blocks.

 Past observed data blocks 

sub−signal
Current

Current data block 
Input stream

Output stream

Previous signal estimate

Current signal estimate 

MC−SURE Denoising

Merging using weighting windows

Fig. 8: Schematic representation of the block-based, on-line, data processing framework centered on the MC-SURE algorithm.

Figure 8 shows a schematic representation of the data processing framework where the sequence of data blocks{yi : i =
0, 1, . . . } is processed one block at a time. The noise in thei-th data blockyi is removed using the selected denoising filter
fλ(·) with λ set toλ∗

i , the best MC-SURE-based parameter value for denoisingyi. The processing of thei-th input data block
yi returns thei-th output data block

ŝi = fλ∗

i
(yi),

which is the sub-signal of the desired signals that is contained inyi. Thus, the processing of the sequence of data blocks
{yi : i = 0, 1, . . . }, results in a sequence of sub-signals estimates{ŝi : i = 0, 1, . . . }.

We denote bŷs(I+1) the estimate of the entire portion of the signals that is available after the processing of the (I+1)-th
data blockyI+1. The signal estimatês(I+1) can be formed by properly stitching together the existing items in the collection
of overlapping sub-signal estimatesŝ0, ŝ1, ŝ2, . . . , ŝI+1 as follows:

• ŝ(I) = {ŝn : n = 0, 1, 2, . . . ,MI} is the previously available signal estimate (i.e., from stitching together the firstI+1
sub-signal estimates).

• ŝI+1 = {ŝn : n = MI − L, . . . ,MI+1} is the new sub-signal estimate, generated by denoising the (I+1)-th data block.
• The updated signal estimates(I+1) is constructed by using tapered windows to properly merge the new sub-signal estimate

ŝI+1 to the previous estimates(I) via

s(I+1) = s(I) ⊙ W(I) + ŝI+1 ⊙ WI+1.

This procedure is initialized by settings(0) = ŝ0. The operator⊙ denotes element-by-element multiplication. The terms
W(I) andWI+1 are one-sided tapering windows given by

W(I) =

{
1, 0 ≤ n < MI − L

β2(n − (MI − L)), MI − L ≤ n < MI

WI+1 =

{
β1(n − (MI − L)), MI − L ≤ n < MI

1, MI ≤ n < MI+1

whereβ1(n) andβ2(n) are respectively the first- and second-half of a length2L cosine tapering window, though other types
of tapering windows could be also used. The use of tapering windows allows us to mitigate edge effects.

The performance of this system depends on how effectively individual data blocks are denoised. We next describe the steps
we have taken to address the issues that arise when applying the MC-SURE algorithm to short data segments. Additionally,
we describe the methodology for selecting the length of datablocks.
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A. Removal of DC components

We have previously shown that the performance of the MC-SUREalgorithm will degrade if the data blockyi has a non-
negligible DC-component. To mitigate the issue and obtain agood parameter value for denoising the data, we filteryi with
a notch-filter centered at the DC-frequency [9]. If the data block yi has no DC-component, it will be indifferent to this DC-
blocking filter. We may assume in the following discussions that thei-th data blockyi is free of a DC-component since, if it
had one, the DC-blocking filter would have removed it at this stage.

B. Noise estimation

The reliability of the SURE curve for thei-th data blockyi depends, among other things, on how accurately the noise
parameterσ is estimated. Unfortunately, a sole reliance on the limitednumber of measurements fromyi is expected to produce
an insufficiently accurate estimate ofσ. We mitigate the problem by combining information from multiple data blocks. Since
the data model expects the noise characteristics to change slowly with time, it is reasonable to assume thatM consecutive data
blocks have additive white Gaussian noise with the same standard deviationσ. Using the Donoho median estimator, a separate
estimate ofσ is computed for each of theM data blocks and the estimatēσI for the current data blockyI is obtained via
weighted averaging

σ̄I =

∑
I−M+1
i=I

Niσ̂i∑
I−M+1
i=I

Ni

where{σ̂I−M+1, σ̂I−M+2, . . . , σ̂I} are the noise estimates from the previousM data blocks,Ni denotes the length of the
i-th data block and estimates from longer data blocks have larger weights as they are expected to be more reliable.

C. Computing the divergencecurve

The estimate of the divergence for the current data blockyI usingk MC runs is given by

d
(k)
j = d̂iv

(k)

yI
{fλj

(yI)}, j = 1, 2, . . . , J

and computed using Equation 4. The parameterλj is thej-th element in the chosen grid of denoising parameter values. For a
fixed j, {d(k)

j : k = 1, 2, . . . } forms a convergent sequence of the estimates of thej-th value of the divergence-curve, which is

denoted here bydj . Since the error|d(k)
j − dj | tends to zero ask increases, thej-th divergence value could then be estimated

by d
(Kj)
j with Kj chosen such that

r
(Kj)
j =

|d
(Kj+1)
j − d

(Kj)
j |

|d
(2)
j − d

(1)
j |

< δ, (6)

whereδ is the convergence stopping criterion. However, individually identifying the number of MC runs for each of theJ
divergence-values could lead to practical difficulties as the convergence rate of{r(k)

j : k = 1, 2, . . . } is not guaranteed to
be the same for differentj. Thus, instances might occur where, for one or a small numberof j-indexes, an unreasonably
large number of runs is needed to satisfy Equation 6. To circumvent this situation, we seek an average/group convergence
requirement, where for all parameter valuesλj , the divergence-value is estimated byd

(K)
j with K such that

r(K) =
1

J

J∑

j=1

r
(K)
j < δ. (7)

The k-indexed sequencer(k) starts with the value of one, and decreases toward zero as thedivergence-curve estimate{d(k)
j :

j = 1, 2, . . . , J} converges with additional MC runs. Figure 9 shows an exampleprofile for the sequencer(k), where the
choice ofδ = 0.02 leads to the termination of the divergence curve estimation afterK = 67 MC simulations.

D. Calculating the denoised signal

Once we have obtained the sequence{d
(K)
j : j = 1, 2, . . . , J} of estimated divergence values and the estimated noise

parameter valuêσ, we can generate the sequence of SURE-values{Tλj
(yI) : j = 1, 2, . . . , J} using Equation 1. The best

parameter for denoising the current data block is given by

λ∗

I
= arg min

λj

{Tλj
(yI) : j = 1, 2, . . . , J}

and the associated sub-signal estimate is given by
sI = fλ∗

I
(yI)
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Fig. 9: Illustration of the profile of the sequencer(k), which is used to track the convergence of the divergence curve estimate.

E. Choosing the size of the next data block

To guarantee that spatial aliasing is minimized (i.e., frequency components in a data block are easily distinguishable), the
size of of each data block (except the first one) is selected using information from previously observed data. At theI-th data
block, we use principles of scale-space theory [11], [12] toestimate the typical size of the dominant signal feature in the
block. By choosing the size of the (I+1)-th block significantly larger than this feature size, weensure that we have enough
samples to reasonably discriminate the frequency components present in the data. Since data processing latency has to remain
minimal, the size of data blocks must be bounded above. In addition, the sizes should also be bounded below to have sufficient
observations to estimate the noise parameters accurately.At the I-th block, the size of the next data block is thus determined
via

NI+1 = min {Nmax,max {θ · ∆I , Nmin}} (8)

where

• ∆I is the data scale at the current data block that is computed via scale-space theory techniques and gives information
on the current expected size of the most relevant features inthe data.

• θ is a multiplicative factor that gives the data block size from computed data scale.
• Nmin is the minimally allowable data block size
• Nmax is the maximally allowable data block size.

IV. RESULTS AND DISCUSSIONS

We next discuss results from an experiment where the proposed framework is tested using a real dataset that is comprised of
sampled measurements of the body acceleration response of avehicle traveling on a road (see Figure 10). These measurements
were taken at the sampling rate of 200 data points per second.Table I lists the parameters that are to be set by the user when
implementing the proposed strategy, along with the specificvalues chosen in the denoising of our specific dataset.

Fig. 10: Example real dataset: vehicle body acceleration measurements taken at the rate of 200 samples per second.
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TABLE I: Parameter values used in the implementation of the proposed strategy for the example real dataset.

Parameter Numerical Value
Standard deviation of probing noise:ǫ 0.0002

Maximally allowable number of MC simulations :N 400
Stopping criterion for the MC-SURE curve convergence:δ 0.02

Maximally allowable segment size:Nmax 500
Minimally allowable segment size:Nmin 30

Fixed overlap between consecutive segments:L 15
Multiplicative factor:θ 12

Noise estimation parameterM 5

We next introduce approaches for selecting the values of parameters for a dataset.

• Jointly selecting N and δ via calibration: The appropriate number of MC runs,N , is system dependent and the
appropriate stopping criterionδ depends on the dataset under consideration. AsN increases, the accuracy of the SURE
curve is guaranteed to increase, though it would take longerto generate the result. This is similarly true when the parameter
δ decreases. There is an inter-dependence between the choices of N and δ - the computation of the SURE curve will
terminate if either the stopping criterionδ is reached or allN simulations are done. Hence, they are selected jointly.
Given a class of datasets, the user needs to use a calibrationprocess to find the values ofN andδ that give sufficiently
repeatable results since it is impossible to a-priori select the appropriate values for these variables for an arbitrary dataset.
This calibration can be done by using a sample measurement segment taken from historical data. In Figure 11(a), repeated
runs of the denoising procedure on the same dataset lead to unsatisfactory and non-repeatable results as a portion of the
signal (i.e., around index-700 to index-900) is not properly denoised for some runs. In Figure 11(b) where N = 400 (i.e.,
N is larger) andδ = 0.02 (i.e., δ is smaller), we observe that the many runs are reasonably similar and all are properly
denoised. These choices of parameters would thus used in theimplementation.
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Fig. 11: Repeatability of denoising results as a function ofthe choices of the parametersN and δ. (a) Results whenN
= 100 andδ = 0.5. (b) Results whenN = 400 andδ = 0.02.

• Selection of ǫ: The parameterǫ is the standard deviation of the synthesized probe noise used in the MC simulations.
We confirmed the observation of Ramaniet al. [6] that the MC-SURE denoising procedure is robust to even very large
changes in the value ofǫ. Figure 12(a) shows a noisy data segment and Figure 12(b) shows its denoised versions withǫ
equal to1.0 and10−12. The results are very similar thoughǫ has changed by twelve orders of magnitude. Thus, for all
practical purposes, the user could choose any reasonable value of ǫ in the above range. However, sinceǫ is involved in
a limit computation, it is preferable in principle for it to be as small as possible. But, selectingǫ too small could lead
to numerical round-off errors. To guard against these potential issues, we recommend choosing in generalǫ to be in the
vicinity of 10−6, which is the midpoint of the interval[1.0, 10−12] in the logarithmic scale.

• ChoosingNmax: The size of the first data block must be preset by the user sincethere are no preceding blocks available
to automatically compute the size. We set this size to twiceNmax, which is the maximally allowable block size for the
dataset under consideration. The value ofNmax must be derived from a-priori expected data scale information. Since
scale space theory uses the Gaussian kernel, the expected sizes of the most salient features in the data would be in the
range of6 × σd, whereσd is the expected data scale. The parameterσd can be computed from a large enough sample
of historical data (if available) or given from user experience. To guarantee thatNmax is sufficiently large and have good
denoising performance, it has been found that choosingNmax equal to2× 6× σd (or larger) works well as illustrated via
Figure 13. The expected scaleσd of the vehicular response data is equal to 15 and thusNmax should be set to 180 or
larger. We observe that whenNmax is less than 180, the denoising performance is unsatisfactory, whereas good denoising
performance is obtained forNmax greater than 180.
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Fig. 12: Illustrating the robustness of the MC-SURE algorithm to large changes in the value of the noise probe parameter
ǫ. (a) Raw dataset. (b) Denoising results withǫ is equal to10−12 and1.0.
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(b) Nmax=125
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(c) Nmax=150
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(d) Nmax=175
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(f) Nmax=225
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(g) Nmax=250
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Fig. 13: An illustration of the choice of the parameterNmax on denoising performance of the algorithm.
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• SelectingNmin and L: The choice of the minimally allowable data block sizeNmin could affect the accuracy of the noise
power estimation. So, if any computed data block length is less thanNmin, it is set toNmin. If Nmin is too small, the noise
power in a data block cannot be accurately estimated and we would need to consider more data blocks (that is, larger
M ) to improve the estimation. There is thus an inter-dependence between the choices ofNmin andM . Since the expected
data scale is obtained when choosingNmax, we also setNmin to be a function of data scale,Nmin = 2 × σd = Nmax/6.
The overlap parameter is then chosen equal toL = Nmin/2. To assess the reliability/robustness of these choices using the
available data, we change the values ofNmin to assess sensitivity. We observe in Figure 14 that with an adequate choice
of parameters, the proposed approach for settingNmin leads to good performance results that are not very sensitive to
changes in the selected values.
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Fig. 14: Assessment of the sensitivity of the choice ofNmin using the available data.

Finally, we present the results for denoising our example dataset using a Gaussian filter as the example denoiser. Table II
shows a listing of the computed statistics and parameters for 20 consecutive data blocks. The parameterλ∗

i in the table is the
parameter of the Gaussian filter as determined by the MC-SUREalgorithm. Characteristic results of the proposed automated
block-by-block data denoising procedure are shown in Figure 15 using sample data blocks. The results seem to indicate that
good denoising performance is attainable from real datasets with noise that reasonably approximate the AWGN model, which
is assumed by the MC-SURE approach.

TABLE II: Listing of computed statistics/parameters for 20consecutive overlapping data segments.

Block Scale Length σ̂i σ̄i λ∗

i

1 12 1000 0.0396 0.0396 3.75
2 12 244 0.0553 0.0427 4.25
3 15 244 0.0480 0.0435 7.0
4 19 360 0.0357 0.0420 5.0
5 13 456 0.0398 0.0416 3.25
6 13 456 0.0464 0.0440 4.25
7 11 312 0.0405 0.0419 3.25
8 15 312 0.0527 0.0429 3.25
9 12 360 0.0476 0.0451 3.75
10 13 360 0.0381 0.0451 3.25
11 31 312 0.0323 0.0423 3.75
12 13 500 0.0368 0.0411 2.75
13 14 500 0.0322 0.0372 3.0
14 13 336 0.0382 0.0355 3.5
15 13 336 0.0393 0.0357 3.5
16 15 312 0.0381 0.0366 1.0
17 13 360 0.0486 0.0388 0.75
18 11 360 0.0590 0.0450 0.5
19 12 312 0.0554 0.0483 3.75
20 14 288 0.0650 0.0533 0.5
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(a) 1-st data block.

(b) 7-th data block.

(c) 8-th data block.

(d) 14-th data block.

Fig. 15: Denoising results in some sample data blocks.
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V. SUMMARY

In this report, we extended the MC-SURE algorithm to automatically denoise streaming data that have been corrupted with
Gaussian or approximately-Gaussian noise. To obtain a practical solution approach, we first recognized that the MC-SURE
algorithm is well-suited for streaming data as it prescribes a blind procedure for optimizing the regularization parameters of
most of the commonly-used denoising filters. Next, we identified the challenges encountered in the implementation of a block-
based version of the MC-SURE algorithm. We then proposed a framework that addresses these challenges and described how
we can select various parameters used in our approach. Finally, we demonstrated that our approach can be used successfully
to denoise a real dataset that fits the data model, where the noise is additive white Gaussian noise.

ACKNOWLEDGMENT

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344.

REFERENCES

[1] A. Rizzo and M. G. Xibilia, An Innovative Intelligent System for Sensor Validation in Tokamak Machines., IEEE Transactions of Control Systems
Technology, Vol. 10, No. 3, May 2002.

[2] U. Sulayman and A. T. Alouani,Smart Grid Monitoring using Local Sensor Network: Real-time Data Acquisition, Analysis and Management., 2011
Proceedings of IEEE Southeastcon, Pages 444-449, March 2011

[3] K. Kwong, R. Kavaler, R. Rajagopal and P. Varaiya,Real-time Measurement of Link Vehicle Count and Travel Time in Road Network., IEEE Transactions
of Intelligent Transportation Systems, Vol. 11, No. 4, Pages814-825, Dec. 2011.

[4] M. Ndoye, A. M. Barker, J. V. Krogmeier and D. M. Bullock,A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed
Road-Condition-Monitoring System., IEEE Transactions of Intelligent Transportation Systems,Vol. 12, No. 3, Pages 795-808, Sep. 2011.

[5] S. Kay, Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, Prentice Hall 1993.
[6] S. Ramani, T. Blu and M. Unser,Monte-Carlo SURE: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms, IEEE

Transactions of Image Processing, Vol. 17, No. 19, September 2008.
[7] C. Stein,Estimation of the Mean of a Multivariate Normal Distribution, Annals of Statistics, Vol. 9, Pages 1135-1151, 1981.
[8] D. L. Donoho,Adapting to Unknown Smoothness via Wavelet Shrinkage, J. Amer. Statist. Assoc., Vol. 90, No. 432, Pages 1200-1224,1995.
[9] J. G. Proakis and D. G. Manolakis,Digital Signal Processing: Principles, Algorithms and Applications. 4th Edition, Prentice Hall, 2007.
[10] S. Orfanidis,Introduction to Signal Processing, Prentice Hall, 1995.
[11] A. P. Witkin, Scale-Space Filtering, Proc. 8th Int. Joint Art. Intell., Karlsruhe, Germany, Pages 1019-1022, 1983.
[12] T. Lindeberg,Scale Space Theory: A Basic Tool for Analyzing Structures at Different Scales, Journal of Applied Statistics, Vol. 21, No. 2, Pages 224-270.


